Dynamic Auscultation of Heart Sounds and Murmurs

W. Lane Edwards, Jr., MSN, ARNP, ANP
Hospitalist Group of Southwest Florida
Affiliate Professor of Nursing,
University of Alaska at Anchorage

Acknowledgement
The sounds you hear today are compliments of "Listening to the Heart" by Daniel Mason, MD., Professor of Medicine, Drexel University College of Medicine, Hahnemann University Hospital, Philadelphia, Pa.
Copyright release 10-9-08 to Partners in Healthcare Education, LLC for 10-18-08 Presentation to Take Care Health System for internal use only.

Disclosures
Real or Potential Conflicts of Interest

W. Lane Edwards, Jr., MSN, ARNP, ANP

- Recipient of Grant/Research Support
 - Roche, GSK, Merck, AZ, Novartis, Proctor and Gamble, Pfizer

- Speakers Bureau
 - Merck, Takeda, AstaZeneca, Novartis, Roche, Novartis, Pfizer

- Major Stock/Shareholder
 - None
Where are we?

- Differentiate Mitral Regurgitation from Aortic Stenosis?
- Differentiate Systolic from Diastolic Murmurs?
- Differentiate S3 from S4?
- Recognize a stethoscope 4 out of 5 trys?

Physiologic Approach

- Key to Understanding the creation of "noise" within the cardiovascular system is based on
 - What causes that noise
 - S4 – atrial contraction
- Significant aid in retention of sounds.

I repeat myself........

- Some say it is a sign of aging.
- Some say that I just ramble.
- Some attribute it to SDAT in my family

- My excuse is a learning theory that says repetition strengthens learning, that's my story, and I am sticking with it.
Heart Sounds and Murmurs

Objectives

- Describe a murmur by timing, radiation, characteristics, and point of intensity
- Grade a murmur by its auscultatory characteristics
- Differentiate systolic from diastolic murmurs by clinical presentation

Objectives

- Distinguish split heart sounds from S3 & S4 by characteristics and timing
- Differentiate first and second heart sounds by characteristics and location of sounds
- Provide the physiologic rationale for creation of the 3rd & 4th heart sounds.

Objectives

- Identify the clinical presentation of selected lesions of the aortic and mitral valves
- Discuss the medical and surgical treatment for each valve lesion.
Today's Agenda
- Anatomy
- Circulation
- Creation of Heart Sounds
- The Cardiac Cycle
- Anticipation!
- Auscultatory Positions
- First Heart Sound
- Second Heart Sound
- Split Sounds
- Third Heart Sound
- Fourth Heart Sound
- Summation Gallop

Part II - The Murmurs
- Description of Murmurs
- Characteristics
 - Holosystolic
 - Decrescendo
 - Crescendo
- Grading of Murmurs
- Aortic Stenosis
- Aortic Insufficiency
- Mitral Insufficiency
- Mitral Stenosis
- Prosthetic Valves

Circulation Review
Types of Valves

- Pressure
 - Aortic & Pulmonic
 - Dependent on pressure gradients

- Structural Support Mechanisms
 - Mitral & Tricuspid
 - Cordae and papillary muscles

Right Atrium and Tricuspid Valve

- Unidirectional blood flow from RA to RV
- Rt. Atria Expansion
- Rt. Atrial Mixing
 - different O² sats
- Tricuspid Valve
 - low pressure
 - small support structures
 - Low pressure gradient

Tricuspid Valve
Pulmonic Valve

- Unidirectional blood flow from RV to Pulmonary circuit
- Pressure valve
- No structural support
- Moderate pressure gradient

Left Atrium and Mitral Valve

- Lt Atria Fixed Size
- Mitral Valve
 - more cordae
 - stronger papillary muscles
 - part of inferior wall
 - Inferior MI issues
 - Pressure issues
 - No Valves to Lungs
Mitral Valve

Mitral Valve Open and Closed

Aortic Valve
The Cardiac Cycle

Rapid LV Filling
- Mitral Valve Opens
- Blood stored in prior cycle rushes into left ventricle.
- If Preload high
 - S3
Diastosis

- As the Mitral Valve is open, blood continues to fill from the LA to the LV increasing pressure and wall tension

Atrial Contraction

- Following the P wave of the EKG, the atria contract augmenting another 20-30% volume increase in LV
 - If large preload
 - S4

Both Doors Closed

- When pressure in Lt Ventricle exceeds that of the LA, the mitral valve closes
 - Aortic Valve is closed
 - Room get smaller!
 - Pressure goes up
Aortic Ejection

- With the Mitral valve prevented from opening by chordae and papillary muscles
- Aortic valve set by pressure above the valve
- Pressure in LV increases

Aortic Valve Opens

- With pressure below the valve higher than above the valve, the aortic valve opens
- When ventricle empties and the pressure is less in LV, aortic valve cusps fill with blood and close

What if....

- Mitral valve can’t open adequately
- Mitral Valve can’t close during systole
- Aortic valve can’t open well
- Aortic valve can’t close well
Anticipation of Abnormals

- History of Hypertension
 - Mitral Regurgitation
 - S3
 - S4
Anticipation of Abnormals

- Congestive Heart Failure
 - Mitral Regurgitation
 - S3
 - S4

Anticipation of Abnormals

- Volume / Pressure Overloads
 - Splitting of Heart Sounds
 - S3
 - S4

Anticipation of Abnormals

- Valvular Abnormalities
 - Ejection Sounds, Clicks
 - Opening Snaps
 - Knocks, plopps
Pulmonic

Anatomical Auscultation Points

- Left Lateral Sternal Border
 Rt. Heart and tricuspid valve
 4th ICS, Left Sternal Border
- Apex
 Lt. Heart or Mitral area
 5th intercostal space, mid clavicular line

© Edwards 2008

Anatomical Auscultation Points

- Base Left
 Pulmonic Area
 2nd ICS, Left of Sternum
 Mitral & Aortic Sounds also heard
- Base Right
 Aortic Area
 2nd ICS, Right of Sternum

© Edwards 2008
Normal First Heart Sound

- Closure Mitral - Tricuspid Valves
- Occurs with onset of the apical pulse and carotid pulsation
- Heard loudest at the apex and LSB with diaphragm (high)

Normal S2

- Closure of Aortic & Pulmonic Valves
- S1 longer & lower
- S2 is shorter & sharper
- Aortic 1st; A2P2
- Base Of Heart with diaphragm (high)

Listen
Splitting of S^2

Normal Split
Physiological Split
Paradoxical Split

Closing Order
Left Ventricle

- Normal (physiological)
 - Aortic – Pulmonic
 - A2-P2
 - Abnormal (paradoxical)
 - Pulmonic Aortic
 - P2 A2

Normal Split S^2

- Splitting during inspiration is normal
- Expiration the splitting will do away
- Increased blood intake into Rt. Heart during inspiration
Listen

Paradoxical Split S 2
Abnormally Wide Split S 2

- Heard split in inspiration and expiration
- Best heard base Lt. with diaphragm
- RBBB, LBBB
- Pulmonary Stenosis
S 3

- Opening of Mitral Valve - rush in
- Ventricular Overload
- Myocarditis
- CHF, Tachy's
- Bell over Apex - Lt. Lateral Recumbent
- Physiologic in young <30 (!)
Listen

Fourth Heart Sound S4
- Caused by Atrial Contraction
- Increased LV Stiffness
 - Primary Myo Dz
 - Htn
 - CAD
 - Aortic Pulmonary Stenosis
- Bell at Apex

S4

© Edwards 2008
Listen

Summation Gallop

Listen
Normal vs Bicuspid Aortic Valve

Listen

Murmurs
Describing a Murmur

- Timing - Systolic Vs Diastolic
- Identify area heard loudest
- Identify radiation of sound
- Identify Duration and Characteristics

Grading of Murmurs

- Grade I
 - very faint - takes several cycles to hear
- Grade II
 - quiet, but heard immediately, first cycle

Grading of Murmurs

- Grade III
 - Moderately loud, but without thrill
- Grade IV
 - loud, may be associated with a thrill
Grading of Murmurs

- Grade V
 very loud, may be heard with a stethoscope partly off the chest, usually associated with a thrill

- Grade VI
 Heard with stethoscope off the chest has a thrill

Listen

Systolic

Early Systolic Murmurs
Holosystolic Murmurs
Mid-systolic Murmurs
Late Systolic Murmurs
Diastolic

- Early Diastolic Murmurs
- Mid-diastolic and Presystolic Murmurs
- S3 Rumbles
- Austin Flint Murmurs

The Misconception

The Electrocardiogram

- Mitral Regurgitation
- Mitral Stenosis
- Aortic Stenosis
- Aortic Insufficiency
When Do I get an echo?

- New discovery of murmur
- Change in clinical presentation
- Annually for grade 3 or above murmurs
- Change in LV function

Aortic Stenosis

Listening for Aortic Stenosis
Aortic Stenosis

Aortic Valve Vegetations

Aortic Stenosis
Pathophysiology AS

Clinical – low output state

Aortic Stenosis

Blood is unable to flow freely from the left ventricle to the aorta during aortic stenosis

Aortic Stenosis

- Low forward flow
- Dizziness
- Fatigue
- LV geometry changes
- Fibrillation possible
- LA pressure up
- Pulmonary back pressure
Listen

Treatment of AS
- Afterload reduction
- Preload reduction
- PVR
- Increased Intravascular Volume
- Anti platelet

Aortic Insufficiency
Aortic Insufficiency

- Compromised diastolic filling of coronary arteries
- IABP contraindicated
- Enhanced preload - LV
- LVH as compensation

Aortic Insufficiency

- Aorta
- Aortic valve
- Left ventricle
- Aortic valve regurgitation
- Aortic valve does not close
- Blood leaks backward
Aortic Insufficiency

Failure of the aortic valve to close tightly causes back flow of blood into the left ventricle.

Listen

Treatment of AI

- Afterload reduction
- Preload reduction
- PVR
- Increased Intravascular Volume
- Anti platelet
Mitral Insufficiency

Listening

Mitral Insufficiency
Mitral Insufficiency

<table>
<thead>
<tr>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cordal Rupture</td>
<td>- Increasing LV geometry changes</td>
</tr>
<tr>
<td>- Inferior wall MI</td>
<td>- Increasing MR</td>
</tr>
<tr>
<td>- Papillary Muscle Rupture</td>
<td></td>
</tr>
<tr>
<td>- Vegetations on leaflet</td>
<td></td>
</tr>
</tbody>
</table>

Mitral Insufficiency

- Large LA
- High Pulmonary Pressure
- Reflection to Lungs
- LVH
- Rt. Heart Failure

- Primary clinical - Respiratory complaints
Listen

Treatment of MI
- Afterload reduction
- Preload reduction
- PVR
- Increased Intravascular Volume
- Anti platelet

Mitral Stenosis
Listening to MS

Normal Mitral Valves

Mitral Stenosis
Mitral Stenosis
- Huge Left Atria
- Mural Thrombus
- Arrhythmia control
- Low forward flow
 - Right heart failure
- Minimal LV geometry changes
- Mostly Pulmonary with some decreased flow

Listen

Treatment of MS
- Afterload reduction
- Preload reduction
- PVR
- Increased Intravascular Volume
- Anti platelet
Left Atrial Mixoma

Listen

Prosthetic Valves
Tissue Valves

Starr-Edwards Caged Ball

Ball Cage Valves

Ball Cage Valve
St Jude Valve

Just wanted to say it formally!

Thank You

For Listening

© Edwards 2008