Pediatric Infectious Disease: A Focus on AOM, RSV, Bronchitis, Pharyngitis

Wendy L. Wright, MS, RN, ARNP, FNP, FAANP
Family Nurse Practitioner
Wright & Associates Family Healthcare
Amherst, NH
Partner – Partners in Healthcare Education

Objectives
• Upon completion of this lecture, the participant will be able to:
 – Identify statistics related to incidence/prevalence of various respiratory/ENT conditions in children
 – Discuss the signs and symptoms of AOM, RSV, Bronchitis and Pharyngitis
 – Discuss treatment options for the above conditions

Pathogens and Resistance
Causative Upper and Lower Respiratory Pathogens

- *Streptococcus pneumoniae*
- *Haemophilus influenzae*
- *Moraxella catarrhalis*

Streptococcus Pneumoniae

- Gram positive diplococci
- Most common cause of Community Acquired Pneumonia
 - Also the most common bacterial cause of OM and sinusitis
- 70% of children and 30% of adults have nasopharyngeal colonization
- Disease results from a microaspiration

Mechanism for the Development of Antimicrobial Resistance

- *Streptococcus pneumoniae*
 - Many mechanisms for resistance
 - Most common mechanism: Resistance from an alteration in the penicillin binding proteins which reduce/eliminate binding of penicillin to the proteins
Mechanism for the Development of Antimicrobial Resistance

• *Streptococcus pneumoniae*
 - Erythromycin resistance: ribosome modification and alteration in antibiotic transport
 - Of increasing concern is the ermAM gene. This gene confers cross-resistance to other 14, 15, and 16 membered rings (clarith, azith)

Penicillin-Resistant S. pneumoniae

% Penicillin Resistant

Where are we now?

• *S. Pneumoniae*
 - 25% - 50% are not fully responsive to penicillins
 - 33% is resistant to macrolides

www.jfponline.com/Pages.asp?AID=1926&UID=22190 accessed 02-19-07
Of Increasing Concern…

- The first clinical isolate of *S. pneumoniae* to exhibit a high level of resistance to fluoroquinolones was found in 2001 in Taiwan.

Streptococcus Pneumoniae

- Most likely to be present with recurrent disease and least likely of all pathogens to resolve without treatment
- <30% chance of spontaneous resolution; Some sources say <10%

H. Influenzae

- Gram negative coccobacillus
 - Bronchotrachial tree becomes colonized and microaspiration occurs
- Most commonly seen among smokers, children of smokers and daycare children
 - 33% - 35% of *H. influenzae* is beta lactamase producing
 - TRUST results (Tracking Resistance in the United States)
 - 31.3% produced B lactamase in 99-2000
 - TMP-SMX resistance increased to 14% from 11.9%
 - Ampicillin resistance decreased from 33.9% to 30.7%
M. Catarrhalis

- Gram negative bacillus
- Implicated in recurrent OM and Sinusitis
- Will often spontaneously resolve if left untreated
- 90% - 98% beta lactamase producing

Clinically-When Do You Suspect Resistance?

- One of the largest predictors of drug resistance is recent antibiotic use
 - Usually defined as within the previous 6 weeks
 - 3-4 fold increased risk of DRSP
- Other risk factors include:
 - Daycare settings, Nursing homes
 - Age > 65
 - Poor hygiene
 - Recurrent antibiotic use

Why is Resistance Becoming Such a Problem?

- Antibiotic Overuse
 - 50% of prescriptions are not needed
 - 100 million prescriptions for antibiotics yearly
 - 50 million not needed
 - Increased use of prophylactic antibiotics
 - Animal husbandry
 - Disinfectant soaps / cleansers
 - Managed care organizations
Why is Resistance Becoming Such a Problem?

• Antibiotic Misuse
 - Not prescribing the correct antibiotic
 - Not taking as prescribed (entire course, tid)

There is still hope....

• Reducing antibiotic usage can reverse resistance
• Choosing the most appropriate antibiotic for the patient can also reverse resistance
• Educating patients about the importance of antibiotic compliance can reduce resistance

Otitis Media
Otitis Media

- Number one diagnosis among healthcare providers caring for children
- By the age of 3, 2/3’s of all children will have had an OM; 1/3 will have had it > 3 times
- Most common amongst boys, winter months, bottle fed babies, preemies, daycare children, children of smokers, and individuals with craniofacial abnormalities

Otitis Media

- Epidemiology
 - Eustachian tube is much shorter, floppy, and horizontal in children when compared with adults
 - Between ages 7-12, eustachian tube resembles that of an adult

Otitis Media

- Symptoms
 - Fever
 - Pain
 - Discharge from ear
 - Tugging or batting at the ear
 - Irritability, crying, lethargy
 - Decreased appetite
 - Decreased sleep
 - Recent URI
Otitis Media

- Signs
 - Red, bulging tympanic membrane
 - Retracted with pus, fluid or air bubbles
 - No movement with insufflation
 - Inability to see normal landmarks
 - Occasionally-hole in the tympanic membrane

Variations of Tympanic Membrane

- Normal TM
- Acute OM
- Otitis Media with Effusion

AOM

- S. pneumoniae
 - Gram-positive diplococci
 - => 25% PCN-resistant via altered protein-binding sites
 - Very unlikely to resolve on own
 - Usually the sickest
Acute OM

- H. influenzae
 - Gram-negative bacilli
 - \(\geq 40\% \) amoxicillin-resistant via beta-lactamase production
- M. Catarrhalis
 - 90-95% beta-lactamase producing
 - Likely to resolve on own

Bullous Myringitis

- Mycoplasma
- Intensely painful
- Treatment is with a macrolide

Latest Guidelines from AAP and AAFP

- Published May 2004
- Pediatrics Volume 115; Number 5
- Article may be found at www.aap.org
Diagnosis of AOM

- History of acute onset
- Identify presence of middle ear effusion
 - Bulging TM
 - Decreased or absent mobility of TM
 - Air-fluid level present
 - Otorrhea
- Identify signs of middle ear inflammation
 - Erythematous TM
 - Otitis media, which interferes with function/sleep

Criteria for Initial Antibacterial-Agent Treatment or Observation in AOM

<table>
<thead>
<tr>
<th>Age</th>
<th>Certain dx</th>
<th>Uncertain dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 mo</td>
<td>Antibacterial therapy</td>
<td>Antibacterial therapy</td>
</tr>
</tbody>
</table>

Wright, 2008
Criteria for Initial Antibacterial-Agent Treatment or Observation in AOM

<table>
<thead>
<tr>
<th>Age</th>
<th>Certain dx</th>
<th>Uncertain dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mo- 2 y</td>
<td>Antibacterial therapy</td>
<td>Antibacterial therapy if severe illness; observation option if nonsevere illness</td>
</tr>
</tbody>
</table>

Criteria for Initial Antibacterial-Agent Treatment or Observation in AOM

<table>
<thead>
<tr>
<th>Age</th>
<th>Certain dx</th>
<th>Uncertain dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>>=2 y</td>
<td>Antibacterial therapy if severe illness; observation option if nonsevere illness</td>
<td>Observation option</td>
</tr>
</tbody>
</table>

Observation

- Observation without antibiotics is an option for this group with uncomplicated AOM
- Observation x 48 – 72 hours
- Limit treatment to symptom relief
Observation Option

• Observation is now recommended after compiling 30 years of information
• 7 – 20 children must be treated for 1 child to derive benefit from the antibiotics
• By 24 hours, 61% have had a decrease in symptoms whether he/she received antibiotics or placebo
• By 7 days, 75% have had a resolution of symptoms

Recommended Antibacterial Agents in AOM

<table>
<thead>
<tr>
<th>Temp = 39°C and/or Severe Otalgia</th>
<th>Clinically defined treatment failure at 48-72 hours after initial management with observation option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommended</td>
</tr>
<tr>
<td></td>
<td>Amoxicillin 80–90 mg/kg/day</td>
</tr>
<tr>
<td>No</td>
<td>Amoxicillin-clavulanate 90 mg/kg/day of amoxicillin with 6.4 mg/kg/day of clavulanate</td>
</tr>
<tr>
<td>Yes</td>
<td>Cefixime</td>
</tr>
<tr>
<td></td>
<td>1 or 3 days</td>
</tr>
</tbody>
</table>

Types of Hypersensitivity

• Non-Type I
 - Rash
• Type I
 - Urticaria or anaphylaxis
Recommended Antibacterial Agents in AOM

Temp = 39°C and/or Severe Otalgia

<table>
<thead>
<tr>
<th>At diagnosis for patients being treated initially with antibacterial agents</th>
<th>Recommended</th>
<th>Alternative for Penicillin Allergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Amoxicillin 50-60 mg/kg/day</td>
<td>Non-Type I: Cefdinir, Cefuroxime, or Cefpodoxime</td>
</tr>
<tr>
<td>Yes</td>
<td>Amoxicillin-clavulanate 90 mg/kg/day of amoxicillin with 6.4 mg/kg/day of clavulanate</td>
<td>Ceftriaxone—1 or 3 days</td>
</tr>
</tbody>
</table>

Temp = 39°C and/or Severe Otalgia

<table>
<thead>
<tr>
<th>Clinically defined treatment failure at 48-72 hours after initial management with antibacterial agents</th>
<th>Recommended</th>
<th>Alternative for Penicillin Allergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Amoxicillin-clavulanate 90 mg/kg/day of amoxicillin and 6.4 mg/kg/day of clavulanate</td>
<td>Non-Type I: Ceftriaxone—3 days</td>
</tr>
<tr>
<td>Yes</td>
<td>Ceftriaxone—3 days</td>
<td>Clindamycin</td>
</tr>
</tbody>
</table>

Remember...
- For children with OM and tympanostomy tubes:
 - You may also utilize topical medications
 - Floxin Otic (Ofloxacin) 0.3% solution
 - Age 1 - 12 years: 5 drops into affected ear bid x 10 days
 - Ciprodex (Ciprofloxacin):
 - 6 months and up: 4 drops into the affected ear bid x 7 days
Duration of Treatment for AOM

- Regimens evaluated
 - Numerous treatment options were evaluated
- Treatment success evaluated at 12-14 days
- Results
 - Similar response in all patients between short-course (e.g., 5 days) and standard-course (e.g., 10 days) therapy
 - Patients <2 years old and those in a daycare setting may achieve better results with 10-day therapy
 - Current recommendation: 5-7 days for all others

Bronchiolitis

- Bronchiolitis is the most common lower respiratory tract infection in infants and is usually caused by a viral infection
- Most common cause: respiratory syncytial virus
- RSV is responsible for >50% of all cases
- Other causes: adenovirus and influenza
- Most commonly seen in the winter and spring
Bronchiolitis

- Respiratory infection that affects the tiny airways (bronchioles)
- These airways lead to the lungs
- Airways become inflamed and swell
- They fill with mucus – making it very difficult for the child to breathe

Bronchiolitis

- Affects infants and young children most often because their small airways become blocked by mucous more easily than older children
- Usually occurs between birth and 2 years of age
- Peak occurrence: 3 – 6 months

Bronchiolitis

- More common in the following individuals
 - Males
 - Bottle fed babies
 - Children in crowded conditions
 - Day care children
 - Cigarette smoke exposed children
Burden of Illness

• Typically, bronchiolitis is a mild illness
• Risk factors for more severe illness include:
 - Prematurity
 - Heart or lung disease
 - Weakened immune system

Complications of Bronchiolitis

• Hospitalization
• Respiratory distress
• Children with this condition are more likely to develop asthma later in life

Signs and Symptoms

• Usually presents as the common cold initially
 - Nasal congestion
 - Runny nose
 - Cough
• These symptoms typically last for 1-2 days and then symptoms begin to worsen
 - Fever
 - Vomiting after coughing
Signs and Symptoms

- Cough worsens
- Wheezes frequently occur
 - High pitched sounds indicating a difficulty with air movement
- Worsening respiratory distress may occur
 - Retractions
 - Flaring of the nostrils
 - Irritability
 - Tachycardia and tachypnea

Contagiousness

- RSV is contagious as are the other viruses that frequently cause bronchiolitis
- Spread via tiny drops of fluid that become airborne with coughing or sneezing

Incubation Period and Duration

- Incubation period is:
 - Days – 1 week
 - This is dependent upon which virus is responsible for the infection
- Duration of symptoms
 - Typically, 7 days but children with severe cases may cough for weeks
Treatment

- Symptomatic treatment is the most common treatment
 - Increased fluids
 - Cool mist vaporizer to thin the secretions
 - Tilting the child’s mattress up may be beneficial
- Antibiotics are not helpful

Pharmacotherapy

- Nebulized epinephrine
- Nebulized ipratropium bromide
- Corticosteroids
- Inhaled corticosteroids

Prevention of RSV

- Synagis (palivizumab)
 - Approved for the prevention of RSV disease in children younger than 24 months of age who are at high risk for serious RSV disease
 - Synagis has not been approved for treatment of RSV infection
 - Synagis is given as a monthly shot to protect children from contracting RSV during November – May
 - High risk children include: babies who were born two months or more premature (32 weeks gestation or less
Bronchitis

• Definition: Inflammatory condition of the tracheobronchial tree
 - Acute bronchitis
 • Most cases of acute bronchitis are viral (90-95%)
 - Chronic bronchitis

• 90% - 95% of bronchitis cases are viral
• 5% or so are bacterial
 - Most frequent cause of bacterial bronchitis - atypical pathogen (i.e. mycoplasma)
Treatment for Bronchitis

• Symptomatic
• Increase fluids
• Steam
• Guiafenesin or similar
• First generation antihistamine
• Cough syrup – usually not helpful or effective

Bronchitis

• Treatment
 - Antibiotics rarely needed
 • If needed, atypical pathogen coverage
 - Prednisone
 • Short, non-tapering burst is often very effective

Pertussis
What Is Pertussis?

- Acute respiratory tract infection
- *Bordetella pertussis* (gram-negative aerobic bacillus)
- Highly communicable\(^1\)
- Morbidity in all ages, particularly infants\(^1\)
- Causes prolonged coughing\(^1\)
- Difficult to diagnose

Reference:

Reported Pertussis Cases in the United States (1922-2004)

Why Are the Number of Reported Pertussis Cases Increasing?

- Incomplete immunization of children\(^1\)
- Vaccine immunity is variable and wanes over time\(^2,3\)
- Persistent human reservoir
- Better awareness of disease as a result of improved diagnostic testing
- Under- and misdiagnosis results in ongoing transmission
- Inadequate use of chemoprophylaxis in close contacts
- Adolescent/adult booster vaccine only recently licensed

References:
2. CDC. *MMWR.* 2004;53(30):693.

References:
1. CDC. *MMWR.* 2002;51:73-76.
Reported Pertussis Cases Are the Tip of the Iceberg

- Nationwide, a small percentage of pertussis cases are actually reported
- Underreporting may be greatest among adolescents and adults

Infant Pertussis Remains a Concern

Transmission of Pertussis

- Pertussis is transmitted to and from all age groups.
- Highly contagious; with 80% secondary attack rates among susceptible household contacts.
- Transmission of pertussis to household members has been documented.
- Young infants are at high risk of morbidity and mortality.
- Adolescents get pertussis from household contacts and schoolmates.
- Adults get pertussis from work and household contacts; parents (adult and adolescent) give pertussis to their infants.
Pertussis in Young Infants

- Infants <6 months have the highest age-specific incidence rate\(^1\)
- Among infants <1 year of age\(^2\)
 - 53% occur at <2 months old (no vaccination)
 - 29% occur at 2-6 months old (incomplete vaccination)
- Source: Shift from young sibling to adolescent or adult. A parent or sibling is involved in 50-75% of cases in which a source is identified\(^3\)
- Importance of a parent as source increases with younger infant age: mothers are 2x more likely to be the source for infants than fathers\(^3\)
- Protection afforded by maternal antibodies is limited\(^4\)

References:

Infant Pertussis: Who Is the Source?

- 616 infant cases from 4 states
- 264 cases had a known or suspected source

Sources:
- Mother 32% (N=264)
- Sibling 20%
- Father 15%
- Grandparent 8%
- Other 25%

Health-care Professionals Involved in Transmission of Pertussis

- Physicians 1912 Schwenkenbecher
- Nurses 1972 Kurt et al
- Physicians 1992 Etkind et al
- Nurses 1995 Christie et al
- Nurses 1997 Matlow et al
- Nurses and Physicians 2005 CDC
When Is Pertussis Communicable?

- Persons with pertussis become highly infectious during the catarrhal period.
- Some individuals, especially infants, may be infectious for a period of time longer than shown above.

Diagnostic Laboratory Findings in Pertussis

- Positive culture
- Positive serologic tests
- Increased WBC with an absolute lymphocytosis
- DFA—variable sensitivity/specificity

Adapted from: Mortimer EA. In: Krugman's Infectious Diseases of Children. 10th ed. Mosby Year Book, Inc; 1998:335-349.

Diagnostic Tests for Pertussis

- NP culture on special media (Regan-Lowe, Bordet-Gengou)
- PCR
- Serologic tests
- Increased WBC with an absolute lymphocytosis
- DFA—variable sensitivity/specificity
Treatment of Cases and Chemoprophylaxis of Close Contacts

- Erythromycin estolate or erythromycin ethylsuccinate (EES) 40–50 mg/kg/day (max 2 g/day) in 2–4 divided doses for 7–14 days*
- Azithromycin 10–12 mg/kg/day (max 500mg/day) 1 dose/day for 5 days†
- Clarithromycin 15–20 mg/kg/day (max 1g/day) in 2 divided doses for 7 days

Reference:

* Use caution when using macrolides, especially erythromycin, in infants less than 2 weeks old.
† Azithromycin may be given as 10–12 mg/kg/day (max 500 mg/day) on day 1 and 5 mg/kg/day (max 250 mg/day) on days 2–5.

Treatment of Cases and Chemoprophylaxis of Close Contacts (cont’d)

- For patients allergic to macrolides:
 - Trimethoprim-sulfamethoxazole 8mg TMP/40mg SMX/kg/day (max 320mg TMP/1600mg/day) in 2 divided doses for 14 days
- All of these agents reduce transmission of B pertussis and ameliorate early symptoms
- No antibiotic lessens the severity or shortens the duration of cough in patients who are already experiencing paroxysmal episodes
- Caution must be exercised using macrolides, especially erythromycin, in infants <2 weeks old (pyloric stenosis)
- Penicillins/cephalosporins are not effective

References:

PHARYNGITIS
Pharyngitis

- Epidemiology
 - Group A Beta Hemolytic Strep
 - Most interest because of its association with severe complications
 - Peritonsillar abscesses, rheumatic fever, post-streptococcal glomerulonephritis - complications
 - Rheumatic fever: 20/100,000 people in early 1900’s, now 1:100,000
 - Recent increase in cases
 - Many cases in individuals without sore throat

Pharyngitis

- Symptoms
 - Group A Beta Hemolytic Strep
 - Rapid onset of sore throat
 - Fever 103-104
 - Swollen glands
 - Children often complain of abdominal pain
 - Usually-no URI symptoms
 - Headache
 - Decreased appetite
 - Dysphagia
 - Irritability

Exudative pharyngitis

Differentials include:
- Strep pharyngitis
- Peritonsillar abscess
- Mononucleosis
- Viral pharyngitis
Plan

- Diagnostic
 • Throat culture: 24 hour is the gold standard
 • Quick strep: 85-100% specificity; 31-95% sensitivity
 • Must swab both tonsils for best results
 • Consider mononucleosis
Pharyngitis

Even with a best case scenario, 1/3 - 1/2 of cases of strep pharyngitis are missed or overdiagnosed using history and physical examination only!!!

MUST DO A THROAT CULTURE

Remember…
Children with mono have strep pharyngitis 50% of the time

Pharyngitis

• Plan
 - Therapeutic: Strep Pharyngitis
 • PCN VK-standard
 • Treatment is for 10 days
 • Warm water gargles
 • Tylenol/NSAID’s
 - Educational
 • Contagion
 • Quick improvement
 • Discard toothbrush
Peritonsillar Abscess

• Generally begins as an acute febrile URI or pharyngitis
• Condition suddenly worsens
 - Increased fever
 - Anorexia
 - Drooling
 - Dyspnea
 - Trismus

Peritonsillar Abscess

• Physical examination
 - May appear restless
 - Irritable
 - May lie with head hyperextended to facilitate respirations
 - Muffled or “hot potato voice”
 - Stridor may be present
 - Respiratory distress

Peritonsillar Abscess

• Physical examination findings
 - Fiery red asymmetric swelling of one tonsil
 - Uvula is often displaced contralaterally and often forward
 - Large, tender lymphadenopathy
Peritonsillar Abscess

Important Reminder
• If respiratory distress is severe, do not examine the pharynx

Treatment
• Aspiration of the abscess may be performed for an accurate diagnosis and treatment
• CT scan of the head and neck
 – Monitor airway at all times
• ENT consult is essential
• Usual management
 – IV antibiotics
 – Inpatient management
Thank You For Your Attention

I Would Be Happy To Entertain
Any Questions

Wendy L. Wright, ARNP
Partners in Healthcare Education
www.4healtheducation.com